Hadoop基础学习---4、HDFS写、读数据流程、NameNode和SecondaryNameNode、DataNode

news/2024/5/20 4:51:55 标签: hadoop, hdfs, 大数据

1、HDFS写、读数据流程

1.1 HDFS写数据流程

1.1 剖析文件写入

在这里插入图片描述
1、客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
2、NameNode返回是否可以上传。
3、客户端请求第一个Block上传到哪几个DataNode服务器上。
4、NameNode返回三个DataNode节点,分别为dn1、dn2、dn3
5、客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
6、dn1、dn2、dn3逐级应答客户端。
7、客户端开始往dn1上传第一个Block(先从磁盘读取数据到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3
;dn1每传一个packet会放入一个应答队列等待应答。
8、当一个Block传输完成之后,客户端再次请求NameNode上传第二个Blocke的服务器(重复执行3-7步)。

1.1.2 网络拓扑-节点距离计算

在HDFS写数据的过程中,NameNode会选择距离上传数据最近距离的DataNode接受数据。那么这个最近距离怎么计算呢?
节点距离:两个节点到达最近的共同祖先的距离总和。
在这里插入图片描述

1.1.3 机架感知(副本储存节点选择)

在这里插入图片描述

1.2、HDFS读数据流程

在这里插入图片描述
1、客户端通过DistributedFileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
2、挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
3、DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来校验)。
4、客户端以Packet为单位接受,先在本地缓存,然后写入目标文件。

2、NameNode和SecondaryNameNode

2.1 NN和2NN工作机制

思考:NameNode中的元数据储存在哪里?

首先,我们做个假设,如果储存在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中!但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage。

这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但是如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中,这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。

但是,如果长时间添加数据到Edits中,会导致文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNameNode,专门用于FsImage和Edits的合并。

NameNode工作机制
在这里插入图片描述
1、第一阶段
(1)第一次启动NameNode格式化后,创建FsImage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
(2)客户端对元数据进行增删改查的请求。
(3)NameNode记录操作日志,更新滚动日志。
(4)NameNode在内存中对元数据进行增删改查。
2、第二阶段
(1)Secondary NameNode 询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
(2)Secondary NameNode请求执行CheckPoint。
(3)NameNode滚动正在写的Edits日志。
(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
(6)生产新的镜像文件FsImage.checkpoint。
(7)拷贝FsImage.checkpoint到NameNode。
(8)NameNode将FsImage.checkpoint重命名成FsImage。

2.2 FsImage和Edits解析

在这里插入图片描述
(1)FsImage文件:HDFS文件系统元数据的一个永久性的检查点,其中包含HDFS文件系统的所以目录和文件Inode的序列化信息。
(2)Edits文件:存放HDFS文件系统的所以更新操作的路径,文件系统客户端执行的所以写操作首先会被记录到Edits文件中。
(3)seen_txid文件保存的是一个数字,就是最后一个edits_的数字
(4)每次NameNode启动的时候都会将FsImage文件读入内存,加载Edits里面的更新操作,保证内存中的元数据信息是最新的、同步的,可以看成NameNode启动的时候就将FsImage和Edits文件进行了合并。

1、oiv查看FsImage文件
(1)查看oiv和oev命令
在这里插入图片描述
(2)基本语法
hdfs oiv -p 文件类型 -i 镜像文件 -o 转换后文件输出路径
(3)案例实操
在这里插入图片描述
2、oev查看Edits文件
(1)基本语法
hdfs oev -p 文件类型 -i 编辑日志 -o 转换后文件输出路径
(2)案例实操
在这里插入图片描述

2.3 CheckPoint时间设置

1、通常情况下,SecondaryNameNode每隔一小时执行一次。
[hdfs-default.xml]

<property>
 <name>dfs.namenode.checkpoint.period</name>
 <value>3600s</value>
</property>

2、一分钟检查一次操作次数,当操作数达到一百万时,SecondaryNameNode执行一次。

<property>
 <name>dfs.namenode.checkpoint.txns</name>
 <value>1000000</value>
<description>操作动作次数</description>
</property>
<property>
 <name>dfs.namenode.checkpoint.check.period</name>
 <value>60s</value>
<description> 1 分钟检查一次操作次数</description>
</property>

3、DataNode

3.1 DataNode工作机制

在这里插入图片描述
1、一个数据块在DataNode上以文件形式储存在磁盘上,包括两个文件,一个数数据本身,一个时元数据包括数据块的长度,块数据的校验和,以及时间戳。
2、DataNode启动后向NameNode注册,通过后,周期性(6小时)的向NameNode上报所有的块信息

	DN向NN汇报当前解读信息的时间间隔,默认是6小时。
<property>
<name>dfs.blockreport.intervalMsec</name>
<value>21600000</value>
<description>Determines block reporting interval in 
milliseconds.</description>
</property>
DN扫描自己节点块信息列表的时间,默认是6小时。
<property>
<name>dfs.datanode.directoryscan.interval</name>
<value>21600s</value>
<description>Interval in seconds for Datanode to scan data
directories and reconcile the difference between blocks in memory and on 
the disk.
Support multiple time unit suffix(case insensitive), as described
in dfs.heartbeat.interval.
</description>
</property>

3、心跳是每三秒一次,心跳返回结果带有NameNode给DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可以。(10分钟+30秒)
4、集群运行中可以安全加入和退出一些机器。

3.2数据完整性

思考:如果电脑磁盘里面储存的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是储存该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决?

如下是DataNode节点保证数据完整性的方法
(1)当DataNode读取Block时,它会计算CheckSum。
(2)如果计算后的CheckSum和Block创建时值不一样,说明Block以及损坏。
(3)Client读取其他DataNode上的Block。
(4)常见的校验算法crc(32),md(128),sha1(160)
(5)DataNode在其文件创建后周期验证CheckSum。
在这里插入图片描述

6.3 掉线时限参数设置

在这里插入图片描述
需要注意的是 hdfs-site.xml 配置文件中的 heartbeat.recheck.interval 的单位为毫秒,dfs.heartbeat.interval 的单位为秒。

<property>
 <name>dfs.namenode.heartbeat.recheck-interval</name>
 <value>300000</value>
</property>
<property>
 <name>dfs.heartbeat.interval</name>
 <value>3</value>
</property>

http://www.niftyadmin.cn/n/348972.html

相关文章

贪心算法专练

⭐️前言⭐️ 本篇文章主要分享几道贪心算法的题目&#xff0c;贪心算法是一种基于自然智慧的算法&#xff0c;这类题目并没有统一的解法&#xff0c;但通常都是每一步做出一个局部最优的选择&#xff0c;最终的结果就是全局最优。 &#x1f349;欢迎点赞 &#x1f44d; 收藏 …

利用GPIO线进行板间通信-23-5-22

本项目基于VU9P(xcvu9pflga2105)板卡以及ZYNQ(xc7z015clg485) 简单结构流程介绍&#xff1a; 1.上位机通过千兆网将指令下发到ZYNQ&#xff0c;ZYNQ进行解帧&#xff0c;将数据解析出来后存储到RAM中,RAM将数据不断输送给GPIO模块&#xff0c;GPIO模块根据对应地址输出数据是…

离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)

本文主要解决以下几个问题&#xff1a; 1.欧拉图能不能有割点&#xff0c;能不能有桥&#xff1f; 2.哈密顿图能不能有割点&#xff0c;能不能有桥&#xff1f; 首先我们要明白几个定义 割点的定义就是在一个图G中&#xff0c;它本来是连通的&#xff0c;去掉一个点v以后这个…

java内部类和异常类1

文章目录 一、Java内部类二、Java匿名类总结 一、Java内部类 成员变量和方法&#xff0c;实际上&#xff0c;类还有一种成员&#xff1a;内部类。在一个类中定义另一个类&#xff0c;我们把这样的类称作内部类&#xff0c;包含内部类的类称作内部类的外嵌类。 内部类和外嵌类…

QT之动态加载下拉框(QComboBox)

QT之动态加载下拉框&#xff08;QComboBox&#xff09; 简介效果原理分析实现 简介 这两天遇到一个需求&#xff0c;需要下拉选项中动态加载一些数据&#xff0c;实现之后感觉挺有意思&#xff0c;特此记录一下。 效果 还是先看下效果&#xff0c;源码也放在文末了 原理分…

分布式事务的21种武器 - 1

在分布式系统中&#xff0c;事务的处理分布在不同组件、服务中&#xff0c;因此分布式事务的ACID保障面临着一些特殊难点。本系列文章介绍了21种分布式事务设计模式&#xff0c;并分析其实现原理和优缺点&#xff0c;在面对具体分布式事务问题时&#xff0c;可以选择合适的模式…

组件123456789

前言&#xff1a;相信看到这篇文章的小伙伴都或多或少有一些编程基础&#xff0c;懂得一些linux的基本命令了吧&#xff0c;本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python&#xff1a;一种编程语言&…

机试打卡 -01 字母异位词(滑动窗口)

算法小白的代码如下↓ class Solution(object):def findAnagrams(self, s, p):""":type s: str:type p: str:rtype: List[int]"""# 输出列表answer_list[]# p的长度p_lenlen(p)# 索引遍历s的子串for i in range(len(s)):# 最后一次循环if ip_le…